FATORES QUE IMPACTAM A INTENÇÃO DE COMPRA ONLINE

Renata Petrin, Érico Aurélio Abreu Cardozo, Juliana Maria Magalhães Christino

Resumo


O objetivo deste artigo é analisar o impacto da aceitação da tecnologia e do comércio eletrônico em si e da percepção de risco na intenção de compra online. Uma questão que sobressai nas discussões presentes na literatura sobre o comportamento do consumidor da era da informação é a força do impacto dos fatores associados à sua intenção em aceitar a tecnologia e a possibilidade subjetiva desse indivíduo em fazer compras pela internet. Com a finalidade de investigar essa questão foi elaborado um modelo a partir da literatura sobre comportamento do consumidor e da aceitação da tecnologia. Esse modelo foi analisado por meio da modelagem de equações estruturais (MEE) utilizada para avaliar 405 respostas válidas obtidas por meio de um survey. Os resultados apontam que a aceitação da tecnologia tem maior impacto na intenção de compra online do que os outros fatores analisados.  


Texto completo:

PDF

Referências


Ajzen, I. (1991). The Theory of Planned Behavior. Organization Behavior and Human Decision Processes, 211(50), 179–211. Retrieved from http://www.nottingham.ac.uk/~ntzcl1/literature/tpb/azjen2.pdf

Ajzen, I., & Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological Bulletin, 84(5), 888–918. https://doi.org/10.1037/0033-2909.84.5.888

Alsamydai, M. J. (2014). Adaptation of the Technology Acceptance Model (TAM) to the Use of Mobile Banking Services. International Review of Management and Business Research, 3(4), 2016–2028. Retrieved from www.irmbrjournal.com

Awad, N. F., & Ragowsky, A. (2008). Establishing Trust in Electronic Commerce Through Online Word of Mouth: An Examination Across Genders. Journal of Management Information Systems, 24(4), 101–121. https://doi.org/10.2753/MIS0742-1222240404

Bauboniene, Z., & Guleviciute, G. (2015). E-Commerce Factors Influencing Consumers’ Online Shopping Decision. Social Technologies, 5(1), 74–81. https://doi.org/10.13165/ST-15-5-1-06

Bellman, S., Lohse, G. L., & Johnson, E. J. (1999). Predictors of online buying behavior. Communications of the ACM, 42(12), 32–38. https://doi.org/10.1145/322796.322805

Blázquez, M. (2014). Fashion Shopping in Multichannel Retail: The Role of Technology in Enhancing the Customer Experience. International Journal of Electronic Commerce, 18(4), 97–116. https://doi.org/10.2753/JEC1086-4415180404

Chen, L., Gillenson, M. L., & Sherrell, D. L. (2002). Enticing online consumers: An extended technology acceptance perspective. Information and Management, 39(8), 705–719. https://doi.org/10.1016/S0378-7206(01)00127-6

Davis, F. D. (1985). A Technology Acceptance Model for Empirically Testing New End-User Information Systems. Massachusetts Institute of Technology, (December 1985), 291.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.1016/S0305-0483(98)00028-0

Davis, F. D. F., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science. https://doi.org/10.1287/mnsc.35.8.982

Díaz, A., Gómez, M., & Molina, A. (2017). A comparison of online and offline consumer behaviour: An empirical study on a cinema shopping context. Journal of Retailing and Consumer Services, 38(November 2016), 44–50. https://doi.org/10.1016/j.jretconser.2017.05.003

Ganguly, B., Dash, S. B., Cyr, D., & Head, M. (2010). The effects of website design on purchase intention in online shopping: the mediating role of trust and the moderating role of culture. International Journal of Electronic Business, 8(4–5), 302–330.

Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). SAGE Publications.

Jafari Navimipour, N., & Soltani, Z. (2016). The impact of cost, technology acceptance and employees’ satisfaction on the effectiveness of the electronic customer relationship management systems. Computers in Human Behavior, 55, 1052–1066. https://doi.org/10.1016/j.chb.2015.10.036

Jarvenpaa, S. L., Tractinsky, N., & Vitale, M. (2000). Consumer Trust in an Internet Store. Information Technology and Management, 1(1), 45–71. https://doi.org/10.1111/j.1083- 6101.1999.tb00337.x

Kułyk, P., & Michałowska, M. (2016). Consumer behaviour on the e-commerce market in the light of empirical research in Lubuskie voivodeship. Management, 20(1), 239–255. https://doi.org/10.1515/manment-2015-0037

Lederer, A. L., Maupin, D. J., Sena, M. P., & Zhuang, Y. (2000). The technology acceptance model and the World Wide Web. Decision Support Systems, 29(3), 269–282. https://doi.org/10.1016/S0167-9236(00)00076-2

Limayem, M., Khalifa, M., & Frini, A. (2000). What makes consumers buy from Internet? A longitudinal study of online shopping. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans., 30(4), 421–432. https://doi.org/10.1109/3468.852436

Mauldin, E., & Arunachalam, V. (2002). Reply to Discussions of An Experimental Examination of Alternative Forms of Web Assurance for Business‐to‐Consumer e‐Commerce. Journal of Information Systems, 16(s-1), 65–67. https://doi.org/10.2308/jis.2002.16.s-1.65

Pappas, I. O., Pateli, N. A., Giannakos, M. N., & Chrissikopoulos, V. (2014). Moderating effects of online shopping experience on customer satisfaction and repurchase intentions. International Journal of Retail & Distribution Management, 42(3), 187–204. https://doi.org/10.1108/IJRDM-03-2012-0034

Pavlou, P. A. (2003). Consumer Acceptance of Electronic Commerce: Integrating Trust and Risk with the Technology Acceptance Model. International Journal of Electronic Commerce, 7(3), 101–134. Retrieved from http://pubsonline.informs.org/doi/abs/10.1287/mnsc.42.1.85

Shih, Y., & Fang, K. (2004). The use of a decomposed theory of planned behavior to study Internet banking in Taiwan. Internet Research, 14(3), 213–223. https://doi.org/10.1108/10662240410542643

Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research. https://doi.org/10.1287/isre.6.2.144

Wu, I.-L., & Huang, C.-Y. (2014). Analysing complaint intentions in online shopping: the antecedents of justice and technology use and the mediator of customer satisfaction. Behaviour & Information Technology, 34(1), 69–80. https://doi.org/10.1080/0144929X.2013.866163 PLEASE

Wu, W.-Y., & Ke, C.-C. (2015a). An Online Shopping Behavior Model Integrating Personality Traits, Perceived Risk, and Technology Acceptance. Social Behavior and Personality: An International Journal, 43(1), 85–98. https://doi.org/10.2224/sbp.2015.43.1.85

Wu, W.-Y., & Ke, C.-C. (2015b). An Online Shopping Behavior Model Integrating Personality Traits, Perceived Risk, and Technology Acceptance. Social Behavior and Personality: An International Journal, 43(1), 85–97. https://doi.org/10.2224/sbp.2015.43.1.85

Zhou, L. (2007). Online shopping acceptance model: critical survey of consumer factors in online shopping. Marketing Journal, 8(1), 41–62. https://doi.org/10.1086/209376,

Zhou, L., Dai, L., & Zhang, D. (2007). Online Shopping Acceptance Model: Critical Survey of Consumer Factors in Online Shopping. Journal of Electronic Commerce Research, 8(1), 41–62. https://doi.org/10.1086/209376,


Apontamentos

  • Não há apontamentos.


O Caderno Profissional de Marketing Unimep (CPMark), Qualis B3, ISSN 2317-6466, está presente nos seguintes indexadores: 

 

 

 

 

Flag Counter